If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+5x-7475=0
a = 1; b = 5; c = -7475;
Δ = b2-4ac
Δ = 52-4·1·(-7475)
Δ = 29925
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{29925}=\sqrt{225*133}=\sqrt{225}*\sqrt{133}=15\sqrt{133}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-15\sqrt{133}}{2*1}=\frac{-5-15\sqrt{133}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+15\sqrt{133}}{2*1}=\frac{-5+15\sqrt{133}}{2} $
| 10+m+2+3=-5m+3m | | 3x-4/2x+1=0 | | 3.8t-4.91=3.3t-14.91 | | 7x+5=55 | | 20+4f=-20+8f | | 8b-8=7b-5 | | (X-4)/5=(2x+3)/2 | | 3x-5(x-2)=-4+5x-7 | | 7x+7=6x+4+x+3 | | 10m+2=19m-13-10m | | -4(-9-5x)=-164 | | w/3+4=13 | | 3x-3x=-16+2x | | 7g+25=4 | | 25^3x=5^2x-4 | | -18y-4=-16y | | 1/2x-11=-11 | | 6(-3+4x)=-282 | | 8x-(2x-14)=44 | | 4(-1-7x)=80 | | 5(3+7x)=120 | | 2.07-14.2p=-14.5p | | -3(-7-6x)=21 | | 4/x+15=2 | | 2+12b=11b-16 | | (2+x)^2+(16-x)^2=196 | | 3a+2=-17 | | 104=2x-20 | | -8+5x=x+20 | | 4x-30+2x+20+40=180 | | 4y–3=2y+27 | | -10x+9x=+12 |